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Elastic Constants of and Wave Propagation in Antimony and Bismuth

SEvMOUR EPSTEIN AND A. P. DEBRETTEVILLE, JR.

U. S. Army Electronics Laboratories, Fort Monmouth, New Jersey
(Received 5 November 1964)

Ultrasonic wave velocities for 14 different modes were obtained on two differently oriented single-crystal
antimony cubes from the time between successive unrectified radio-frequency pulse echoes. This redundant
set of data was fitted by a least-squares technique to Voigt theory to yield the six room-temperature adia-
batic elastic-stiffness constants. In units of 10° dyn/cm? ¢1;=99.4(1), c3a=44.5(9), ¢14=39.5(3), ces
=34.2(3), ¢13=26.4(4), and cy4=-+21.6(4), the positive sign for ¢;4 following from our choice of positive
Cartesian axes. When similarly treated, Eckstein, Lawson, and Reneker’s bismuth data yield in these same
units: ¢1;=63.22, ¢33=238.11, ¢4 =11.30, ¢55=19.40, ¢;3=24.40--0.09, ¢;4=+7.20. Also included are a visual
method of fixing the laboratory coordinate system in antimony by means of an imperfect cleavage plane,
a calculation of the pure-mode directions in the mirror plane, a simple formula for choosing the nonextra-
neous value of ¢;3 for trigonal crystals having six independent elastic constants without resorting to lattice-
stability criteria, and a calculation of the deviation of elastic-wave particle displacement and energy-flux di-
rections from the propagation direction. For waves propagating in the (0,1,1) and (0,1,1) directions, the
particle-displacement deviations for antimony and bismuth do not exceed 15° and 13°, respectively, and
corresponding energy-flux deviations up to 45° and 27°are obtained.

I. INTRODUCTION

N the well-designed experiment of Eckstein, Lawson,
and Reneker! (hereinafter referred to as ELR),
trigonal bismuth’s six adiabatic elastic stiffness con-
stants were determined from measurements of acoustic-
wave propagation. An extension of their work to anti-
mony seemed natural, and a recently determined set of
antimony constants is desirable, considering both (1)
the fact that currently available antimony crystals are
purer and less strained than those available to Bridg-
man® and (2) the different measuring technique. The
design of our experiment is essentially that of ELR, but
our data are principally taken on just two differently
oriented specimens, and our method of calculating the
elastic constants differs in that we use a least-squares
procedure. (For completeness and clarity of presenta-
tion we incorporate the basic data and equations given
by ELR, and other material as appropriate; the reader
is nevertheless referred to ELR for points not covered,
and for additional references.) In addition, an inspection
method of establishing laboratory axes in antimony is
described ; a simple formula is given for obtaining the
nonextraneous value of ¢;3; the directions of pure-mode
propagation in the mirror plane are evaluated; and the
directions of particle displacement and energy flux for
certain modes are calculated and compared with the
wave-propagation direction. ELR’s 14 bismuth veloci-
ties are also reanalyzed by our procedures, and a com-
parison between the two similar elements is made.

In the next section of this paper, some well-known
crystallographic and cleavage data for antimony are
introduced to provide a background for presenting the
convention used for choosing coordinate axes in the
crystal. This is followed by sections on the design of the
experiment, experimental detail and the method of
calculation of the constants. In the remaining sections

1Y, Eckstein, A. W. Lawson, and D. H. Reneker, J. Appl. Phys.
31, 1535 (1960).
?P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 365 (1925).

the limitations of our analysis, the elastic constants, and
acoustoelastic wave-propagation properties in aniso-
tropic antimony and bismuth are discussed.

II. CRYSTALLOGRAPHIC DATA AND CLEAVAGE
PROPERTIES OF ANTIMONY

Like bismuth, antimony’s primitive cell is a 2 atom/
cell thombohedron (Fig. 1) with one atom at each
corner and a ninth slightly displaced from the midpoint
in the (1,1,1) direction. The nearest-neighbor distances?
are 2.87 and 3.37A, the density is 6.7 g/cm?, the
rhombohedral angle is 57°6, and the cell edge is 4.49 A
at room temperature. It is brittle. The principal
cleavage plane at room temperature is the (111) plane
and fracture occurs between atoms having the larger
nearest-neighbor distance ; the secondary cleavage plane
is of the (211) type indexed in the primitive cell,® and
is relatively imperfect. These latter planes, spoken of as
dominant secondary cleavage planes by one of us,?
intersect the (111) plane in lines giving the directions of
the three equivalent twofold axes. These axes are normal
to the mirror planes which contain the trigonal and
bisectrix axes. The plane’s position in relation to a
right-handed Cartesian coordinate system fixed in the
crystal, or what is equivalent, the position of the plane’s
Laue spot reflection, can be used (see Sec. IV) to dis-
tinguish between two possible choices for such coordi-
nate systems in which the signs of ¢j4 and certain
magnetoresistance coefficients” change. Our choice of
coordinate system and the convention used to choose it

3W. L. Bragg, Atomic Structure of Minerals (Cornell University
Press, Ithaca, New York, 1937).
(l; 53.) S. Barret, P. Cucka, and K. Haefner, Acta Cryst. 16, 451

8 C. Palache, H. Berman, and C. Frondel, Dona’s System of
Mineralogy (John Wiley & Sons, Inc., New York, 1955), Vol. 1.

§ Relative to a hexagonal cell, this plane is of the (1014) type.
Referred to a larger eight-atom-containing nearly face-centered
cubic cell, it is of the (011) type (also shown in Fig. 1).

7 Seymour Epstein, J. Electrochem. Soc. 109, 738 (1962);
?legg?ur Epstein and H. J. Juretschke, Phys. Rev, 129, 1148
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are arbitrary. So that the signs of ¢;4 for antimony and
bismuth can be directly compared, we adopt ELR’s
specification for the positive-axes senses, as shown in
Fig. 1.

The axes senses in the specimens were determined
upon indexing a Laue diagram. (See Sec. IV.)

III. DESIGN OF EXPERIMENT

As outlined by ELR and their cited references, the
six Voigt elastic stiffness constants for the class R3m are
represented by

¢i1 €12 (€13 €14
C12 cn
Cij= |€13 €13 (€33 0
€14 —C14 0 C4s
0 0 0 0 614 cu
0 0 0 0 C14 Ces

where cgs= (c11—¢12)/2. For acoustoelastic waves propa-
gating with direction cosines /, 7, #, in this order rela-
tive to the X, ¥, and Z axes of a right-handed coordinate
system, three values for the velocities (one longitudinal
and two transverse) satisfy the Christoffel determinant.
Symmetry, however, prevents one from choosing six of
the nine possible modes which would allow the direct
(and accurate) determination of the six constants on
one simply shaped oriented specimen. Consequently; it
is necessary to employ a minimum of two differently
oriented single-crystal cubes and more than the mini-
mum of six modes required in principle to determine six
constants. All but ¢;; are best arrived at when (1) they
derive from velocities of three modes propagating along
each coordinate-axis direction on one specimen and (2)
the velocity data so obtained are self-consistent.
Accordingly, one of the two specimens needed is a cube
with faces normal to the principal axes. To determine
¢13 Symmetry requires one to employ a mode propagat-
ing at any ang!: with the trigonal axis other than 0°,
90°, and 180° (plus four of the five previously discussed
constants). Two directions (45° and 135° with the ¥V

of the nearly cubic cell. +Y is along

*NSPERFECT CLEAVAGE PLAXE, (1) (3,1,1) and + X along [011]
! et -

MPERFECT CLEAVAGE PLAXE,(0)))

axis in the ¥-Z mirror plane) exist for which ¢;; makes
its maximum contribution to the effective stiffness con-
stant, and our second cube is oriented with faces normal
to these directions and normal to the X direction. To
insure that the five already determined values for the
constants are the same for this cube, velocity data are
obtained for its nine possible modes.

In all, 18 velocity measurements are required. Be-
cause one of them corresponds { . a doubly degenerate
shear mode along the Z axis, and three others repeat the
modes along the X axis on the second orientation, only
14 velocities need be analyzed in detail. Clearly, these
must satisfy 8 redumdancy relations for a meaningful
calculation of the six elastic constants. The 14 expres-
sions for the effective stiffness constants pv;? are listed
in Table I. (The symbols v, through v;4 are chosen to
correspond to ELR’s arbitrary assignment.) Also in-
cluded are the wawve-propagation and transducer-
polarization-direction cosines, the numerical values of
the averaged observed velocities, and the experimental
tolerances.

IV. EXPERIMENTAL DETAIL

The velocity of sound was determined by the ultra-
sonic pulse-echo method. A pulse width of approxi-
mately 2 psec wide was used and the distance between
the maximum amplitude of successive unrectified radio-
frequency pulses was used as a measure of the transit
time.® Transit-time error effects were also investigated
by means of the dummy-transducer method.® Times
were measured on a Tektronix 585A oscilloscope whose
timing circuit was checked with a counter (Hewlett-
Packard 524B) and a quartz signal generator (Tek-
tronix Time Marker Generator 180-S1). An Arenberg
PG-65-C pulse generator, preamplifier PA-620-B, and
wideband amplifier WA-600-B were used to generate
and amplify the pulse=. An X- or Y-cut-quartz trans-
ducer of 10- or 5-Mc/sec fundamental frequency func-

8S. Eros and J. R. Reitz, J. Appl. Phys. 29, 633 (1938).
9C. S. Smith and J. W. Burns, J. Appl. Phys. 24, 15 (1953).
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TasLE I. Effective stiffness constant equations and experimental antimony velocities.
Direction cosines of Experimental
Eq. Effective stiffness constant equations propagation transducer velocity
No. (p, the material density) vector polarization 10% cm/sec
(1) p‘vl’=6u 100 100 3.92:!:2%
2) prt =3[ (costcas) +{ (caa—cos)?H-4c12)172] 001 3.00:1.5%
3) pva* =3[ (cestcus) — { (caa—cos)+4c12}12] 010 1.53+2.6%
) prs=ces=%(cri—c1a) 010 100 2.23:£1.5%
(5) pvd =3[ (cutcu)+{ (cas—cu)?+4e12)12] 010 3.98+1.7%
(6) pve?=3[ (cuutcas) — { (cas—cu)*+4a12}12] 001 2.244-29,
(7 Pt =cz3 001 001 2.604-1.29%,
8 PUs=Cyy 100 or 010 2.454:1.29%,
©) 2pve*=14 (cutcas) teou—cu
F{Gen—3ess—c1)*+ (crstca—cia)?}12 0,1/v2,1/V2 0,1/V2,1/vZ 3.124-1.99%,
(10) 2pvi*=4% (cu-tea) +ea—cu
—{Gen—3can—c1)*+ (cratcau—cia)?)? 0, —1/v2,1/v2 1.254+1%
(an puse’ =} (cestcae) Fone 100 2.87+4.1%
(12) pu1a*= }(cestcas) —c1s 0, —1/V2, 1/N2 100 1.54+10%
(13) 2pv1t =% (en+cas) +cutcn
+{ Gen—Fesst-c19)*+ (crstcautcrd) 12 0, —1/V2,1/N2 4.14+1.8%
(14) 2pvi =3 (cutcas) +cutcus
—{Geu—1icuta)+ (uteouta) P 0, 1/v2,1/V2 1.50:6%

tioned as the transmitting and receiving transducer.
Measurements were taken between 5 and 70 Mc. The
frequency which gave the sharpest pattern for a partic-
ular mode is the one at which the velocity was meas-
ured. These best frequencies were scattered throughout
this range. More than one frequency gave a decipherable
pattern for a given mode, but most frequencies did not.
It was, however, possible to obtain a crude check of the
frequency dependence of v;. This result together with
qualitative results for other modes at two frequencies
show no frequency dependence within the specified
experimental tolerances.

Salol was used to bond the transducer to the speci-
men surface which was either a natural cleavage surface,
the (111) plane, for slab specimens, or a comparatively
rougher spark-cut surface for the two specimens whose
velocities were actually used to obtain the constants.
The slab specimens, cleaved at opposite faces and of
varying thickness and width, were used primarily to
check the effect of spark-cut surfaces on the coupling of
energy into and out of the specimens and on the reflec-
tion of energy at the back surface into the specimen. No
deleterious effects of spark cutting were seen. Another
experimental check is that our values for vy, v, and v;
are within 49, of Eckstein’s!® 77°K wvelocities which are,
respectively, 3.85, 4.08, and 2.58 10° cm/sec.

Zone-refined antimony, Cominco Grade 69, 99.999%,
pure, was the stock for our slabs and cubes. (Initially,
stock which was very likely less pure was used and at
the few points where checks were made yielded essen-
tially the same results.)

The two differently oriented single-crystal cubes,

Y, Eckstein, Phys. Rev. 192, 12 (1963).

12 mm on edge, were prepared by spark cutting! their
faces within =1° as required for our experimental
design. Strains were checked for by x-ray diffraction.

Back-reflection Laue diagrams were used to choose
the positive X, ¥, and Z axes directions. They were
indexed by identifying spots belonging to the (011) zone
(in the mirror plane) on each side of the (111) pole (see
Fig. 1)—in particular, the (311), (411), (511), (100),
(011), and (111) spots. (These indices are based on the
large, nearly cubic, rhombohedral cell containing 8
atoms; the notation is Vickers.)"

Part of Vickers’ stereogram is reconstructed in Fig. 1
in order to show the relative positions of the secondary
cleavage plane to the axes. This plane was positively
identified by comparing the angle between the second-
ary cleavage plane and the (111) plane as measured on
cleaved specimens, firstly with the estimated angle the
(011) spot makes with the (111) spot, and next with the
value for this angle given by Dana.® Our observations
of secondary cleavages cn many antimony rods and
slabs show this plane to be easily observable and to
slant in a unique direction. Accordingly, a convenient
way of identifying the right-handed coordinate system
used in the crystal is shown in Fig. 1. With the planes
sloping downward to the right, the positive ¥ axis is
directed from left to right, positive X toward the ob-
server, and positive Z upward.

V. EXPERIMENTAL ANALYSIS AND RESULTS

Our velocity values, shown in Table I, represent
averages of the average velocity calculated from meas-
UH. J. Ehlers, D. F. Kolesar, Rev. Sci. Instr. 34, 1054 (N)

(1963).
2. Vickers, J. Metals 9, 827 (1957).
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urements of the time between successive echoes made
over periods of weeks. They are rounded off to the last
significant figure and the tolerances represent the larger
of the fluctuations in these or the accuracy of a specific
measurement. Transit-time errors attributable to the
transducer, determined after all the velocity data were
completed, are about 19;. They are not applied because
(1) they could not be systematically obtained, (2)
except for vy’s they are less than the over-all velocity
tolerances specified for each velocity, and (3) we have
no information on the fluctuations in the transit-time
correction measurements themselves. Taken at face
value, a 19 average correction to the velocities would
scale the antimony stiffness values by 29.

Before the numerical evaluation of the constants was
carried out, the general features of the velocity data
were examined for consistency with the equations of
Table I as follows: 5 being greater than vy; clearly fixes
¢14 as positive for the axes senses chosen. In turn, this
requires that v;5>49,4’ be greater than v®+v1,?; 1*>9,¢%;
212> 3%; and 215> 0%, which is indeed the case within
experimental error. These inequalities are compatible
with assigning the larger velocity value of two coupled
modes, normally associated with the longitudinal mode,
to the positive radical of the relevant expressions, i.e.,
in the pairs v, and 3, v4 and g, v9 and vy3, and ;2 and
14, the first velocity is the greater one. Next, the eight
redundancy relations, a more sensitive and detailed test
of the data than the trace relations used by ELR, were
evaluated ; one obtains that v;;=1.253-19, for antimony
is incompatible with the others in this formalism.
Consequently, attempts to fit to it and its inclusion in
aleast-squares function are meaningless and it is ignored
in our calculation of antimony’s constants. A possible
reason for 7;,’s incompatibility is discussed in the section
on elastic-wave refraction.

Generally stated, our least-squares procedure is based
on adjusting each of the 14 squares of the velocities
within experimental error so that they give a minimum
deviation from ‘the central experimental-velocity-
squared values and, when inserted in Egs. (1) through
(14), yield a common value for each of the six stiffness
constants.

EPSTEIN AND A. P.

DEBRETTEVILLE, Jr.

The least-squares function used is
4 via’_vioz 3
)
i=1 \ 2v;,A7;

where the subscripts ¢ and o signify adjusted and ob-
served, and Av; is the experimental uncertainty in the
ith velocity. This task is simplified by initially selecting
those velocities and combinations of velocities which
are related to the smallest number of stiffness constants
and then extending the selection in steps to include more
and more velocities until all the constants are obtained.
As more velocities are included, the previously obtained
values are readjusted when necessary. Specifically, first
5%, 1%, v10°+713°, and v2+;® are adjusted and ¢y and
ces obtained. With these values and v3°—73* and
99°— 3%, a common value for ¢4 is obtained, usually upon
readjustment of the previously obtained velocities and
constants. After this, ¢y is similarly obtained but from
ve?, v+ v¢%, and (v—1?)% and ¢33 from 972, v4® 4011 and
v12°+ 012 Finally ¢;3 is obtained from (v°—711%)? and
(vi2?—v14)? again readjusting the already obtained
values as necessary. Because each of the functions from
which ¢33 is calculable yields two values, the common
one is, of course, the proper one. (Antimony calculations
involving incompatible v5; are oniitted.)

The results of this procedure for antimony and for the
complete bismuth data of ELR, and the results of other

workers and their procedures, are presented in Tables
II, ITI, and 1V. These are next discussed.

VL. DISCUSSION
A. Nature and Limitations of Fit

In the course of fitting the antimony data, it became
clear that the 14 equations of Table I intersect in a
well-defined region of a 6-dimensional stiffness-constant
space and that only a very narrow range of values for
the constants is possible. The bounding limits of this
region are, roughly, such that a change greater than 5%,
in almost any constant appears sufficient to bring one
or more of the 14 velocities outside the experimental
range. Accordingly, the basis for choosing the constants

TasLE II. Elastic stifiness constants at room temperature.

¢ c12 €13 cu C33 Cu Cos Source
Sb 99.4(1) 30.9(1) 26.4(4) +21.6(4) 44.509) 39.5(5) 34.2(5) This work, least squares
99.31 44.59 Eckstein,* transmission
technique at 77°K
81.00 11.00 -+18.00 43.60 33.60 35.00 Leventhal,® echo technique
79.20 24.70 26.10 +11.00 42.70 28.50 27.30 Bridgman,® static technique
Bi 63.22 24.42 24.8(9) + 7.20 38.11 11.30 19.40 ELR, least-squares recalculation
k.
63.50 24.70 24.50 + 7.23 38.10 11.30 19.40 ELR,4 transmission technique
21.50 + 7.20 Kor’s,® recalculation of ELR
62.90 35.00 21.10 — 423 44.00 10.84 13.37 Bridgman,® static technique
Units: 10® dyn/cm?.
s See Ref. 10. bSee Ref. 13. ¢ See Ref. 2. d See Ref. 1. ®See Rel, 14,
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Taste 1II. Elastic compliance constants at room temperature.
Su —S12 —Sis —Su Sa S Ses Source
Sb 16.2 6.1 5.9 12.2 29.5 38.6 4.6 This work, least squares
17.7 3.8 8.5 8.0 33.8 41 43 Bridgman®
Bi 25.74 8.01 11.35 21.50 40.77 115.90 67.51 ELR,? least-squares recalculation
26.9 14.0 6.2 —16.0 28.7 104.8 81.2 Bridgman®
Units: 1073 cm?/dyn.
aSee Ref. 2. bSee Ref. 1.
TasLE IV. Calculated and experimental limits of velocities.
Sb Bi
Lower Least-squares Upper Lower Least-squares ELR Upper
exp limit calculation exp limit exp limit calculation calculation exp limit
n 3.84 3.85(2) 4.00 2.518 2.540 2.545 2.562
Vs 2.95 2.96(0) 3.04 1.541 1.552 1.635 1.559
73 1.49 1.50(1) 1.57 0.851 0.851 0.667 0.859
vy 3.91 3.98(5) 4.05 2.553 2.559 2.565 2.589
v 2.20 2.26(0) 2.27 1.398 1.407 1.406 1.416
g 2.19 2.20(4) 2.28 1.016 1.026 1.026 1.028
77 2.57 2.58(0) 2.63 1.957 1.971 1.571 1.987
g 2.42 2.43(0) 247 1.063 1.073 1.073 1.085
) 3.06 3.17(0) 3.18 2.063 2.067 2.109 2.101
710 2.75 2.95(6) 298 1.505 1.517 1.518 1.539
11 1.24 1.86(6) 1.26 1.144 1.147 1.071 1.156
V12 4.06 4.17(3) 421 2.400 2.437 2.491 2.482 -
V13 1.38 1.50(9) 1.69 0.907 0.912 0.910 0.913
141 1.56(2) 1.39 1.049 1.508 0.937 1.061

V14 -
Units: 10° cm/sec.

was relaxed to obtaining a near-least-squares minimum
fit. We estimate our values, presented in Table IT, to be
within about 29, of a true least-squares minimum
fit and we note that such a fit would be as uneven as the
fit presented.

When applied to ELR’s bismuth data, our procedure
yields essentially one set of constants except for cis
which may range within =0.09 of the value given
without causing any one velocity to be calculated
outside its experimental limit. That one set of values
obtains is readily evident from the facts that our values
differ little from ELR’s, yet five of their calculated
velocities are outside the experimental range and just
one of ours is at the lower experimental limit. This fit is
characterizable as even and quite good, considering the
very small velocity tolerances ELR specify.

B. Comparison of Constants and Direct
Calculation of ¢y3

Included in Table II with our constants are ¢;; and
¢33 calculated from Eckstein’s®® 77°K velocity data for
antimony, ELR’s bismuth constants values, bismuth
and antimony values calculated from Bridgman’s® early
isothermal compliance measurements, unpublished
antimony values of Leventhal® and some calculated
bismuth values of Kor." Agreement with Eckstein’s ¢11

1 E. Leventhal, MS thesis, Polytechnic Institute of Brooklyn,
New York, 1959 (unpublished).
1 8. K. Kor, Physica 28, 837 (1963).

and ¢33 for antimony has already been pointed out in
Sec. IV (by noting that his v, and »; and ours are the
same) ; and except for ¢11, agreement with Leventhal is
fair. Although the nature of our original stock and our
method of preparation are preferable to Leventhal’s,
we cannot account for the discrepancies on the basis
that our crystals are purer and less strained. We have
already noted that »; and vg were also obtained on
cleaved surfaces and that these values agreed well with
the values obtained on our cube. The purity of the
cleaved specimen was less than that of the cube (al-
though very likely still purer than Leventhal’s). Fur-
thermore, 79 and v;; were again measured after the speci-
men was (accidentally) damaged. A 3-mm transducer
was placed next to the cracked region where no visible
signs of damage were obvious ; no change in the velocity
values were found.

Our recalculation of the bismuth constants yields
essentially ELR’s values within about 19 or less. Com-
pared to Bridgman’s results, our individual constants
fit poorly for both antimony and bismuth, even allowing
for the large cumulative error introduced for some of the
constants by the inverse tensor transformation and the
negligibly small isothermal corrections. Uniform and
over-all agreement is not necessarily to be expected
since some of his individual values are adjusted to fit
his linear and volume compressibilities. On the other
hand, the compressibilities calculated from our data do
agree with his directly measured unadjusted compressi-
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TasLE V. Linear and volume compressibilities.
Units: 10~%cm?/dyne.

Sb Bi
ELR,
This work Bridgman® recalculated Bridgman»
(Ref. 2) (Ref. 2)
ke 4.1 5.40 6.38 3.59
ks 17.5 16.84 18.07 16.13
ky 258 27.64 30.83 29.31

» Isothermal values; isothermal-adiabatic correction is negligible,

bilities (Table V) within appropriately calculated
tolerances.

Agreement with Kor’s nominal value for ¢;3 is not
expected for it is extremely sensitive to the velocities.
Kor calculates ¢y; from particular ELR velocities with-
out first adjusting them to be compatible with the
others. Consequently, our value for ¢y; is to be preferred.

613’s extreme sensitivity can be appreciated from the
following formula :

o (1'124"{‘!'14:) —p ('L‘sa“l"b'ua‘)
€13= 8 (Cu+2644) )
2¢14

where the symbols have their previously defined mean-
ings. In principle, this expression can be used to calcu-
late ¢y; directly, the extraneous root introduced by the
quadratic already having been eliminated. We em-
phasize that properly calculated velocities and con-
stants must be inserted unless one is willing to accept an
uncestainty of 1009, or more, and note that the value
of ¢13 is, as it should be, independent of the convention
used to determine the sign of ¢4 as the signs of the
velocity function in the numerator and ¢4 change
together. With this formula, it is necessary neither to
employ the sign considerations outlined by Mayer and
Parker!s nor the conceivably less-discriminating strain-
energy stability criteria.’® An analogous expression for
¢13 in hexagonal systems, where ¢4 is identically zero, is
not possible.

C. Elastic-Wave Refraction

In our attempt to understand 7y,’s incompatibility
for antimony, the 43° and 135° data were further
analyzed in terms of the theory of plane elastic waves
in aelotropic media.!” Particle displacement and energy-
flux directions, and the pure-mode direction in the V-Z
mirror plane, are calculated for both antimony and
bismuth and compared with each other, and with the
propagation and transducer-polarization directions. An
outline of the calculation and the energy-flux expres-

15W. G. Mayer and P. M. Parker, Acta Cryst. 14, 725 (1961).

18 G. A. Alersand J. R. Neighbors, J. Appl. Phys. 28, 1514 (1957);
L. J. Teutonico, #bid. 32, 119 (1961).

17 M. J. P. Musgrave, Proc. Roy. Soc. (London) A226, 339
(1954); P. C. Waterman, Phys. Rev. 113, 1240 (1959); P. E.
Borgnis, #bid. 98, 1000 (1955); A. E. H. Love, 4 Treatise on the
Mathematical Theory of Elasticity (Dover Publications, Inc.,
New York, 1944). .
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sions obtained are given in the Appendix; the results
of this calculation, summarized in Fig. 2, are neyxt
discussed.

Our analysis shows that the unit displacement eigen-
vectors associated with the vy and v;; modes, 4° an(
AY, deviate by —4° for antimony and —3.2° for
bismuth from the transducer polarization directions
used to excite these modes. This small value is favorable
for exciting the v;; mode in antimony, giving rise to the

three well-defined pulses displayed by the oscilloscope.

This same display obtains with either the 3-mm-
diameter or the %-in.-square transducers. The cor-
responding deviations for 4 and A" are +14.6° for
antimony and +12.4° for bismuth. These deviations
are not of a nature which would explain our egregious
711, nor do the pure shear-mode directions in the ¥-Z
plane which are 117° for antimony and 107° for bismuth.
However, the deviation of the energy flux, or ray
velocity, from the normal is about 45°. For our dimen-
sions, energy is deflected from a side before reaching the
opposite reflecting face. Upon deflection the energy is
refracted into spurious modes, giving rise to the pulses
displayed. No pulse was found that corresponds with
1y calculated. This is due to the fact that in relation to
the large intrinsic attenuation of antimony not enough
energy flows along the wave-normal direction to reach
the opposite face and to be echoed back to the trans-
ducer for detection.

We note that the smaller the flux deviation angle, the
more numerous and better defined are the echoes, and
that spurious pulses exist for almost every mode.
Conical refraction effects along the triad axis, predicted
by Waterman,!” verified by Papadakis on rock salt and
calcite,’® and noticed by ELR in bismuth, did not
interfere with obtaining decipherable echo patterns.
For antimony the conical semi-angle in 28°40’; for
bismuth, 32°30'.

Refraction effects were observed for either the 3-mm-
diam or %-in-square transducers as sender-receiver.
Many of the displays obtained with the larger one con-
tained more spurious pulses than most displays ob-
tained with the smaller one, depending apparently upon
the propagation direction and the mode.

It is not possible for us to comment on the effects of
the large deviation angles in bismuth since we do not
have precise information on ELR’s specimen geometry.
We can only remark that the combined efiects of
specimen size, refraction, and attenuation are not as
severe as they are in antimony. All of ELR’s velocities
are compatible and Eckstein' reports that his antimony
echo displays are not as clean as they are for bismuth.

D. General Comments

" Our experiment and analysis are based on plane
elastic waves in extended media, and our specimens are

18 E. Papadakis, J. Appl. Phys. 34, 2168 (1963).
1Y, Eckstein (private communication).

o) e e e e e
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Fi1c. 2. Energy density flow, displacement, propagation and pure-mode directions in ¥-Z mirror plane. §x* is the angle between the
vectors K and s where s is any of the vectors 4¢ and P2. The signs for §x* indicate placement at opposite sides of K with -+§ counter-
clockwise. Parts (a) and (b) are for antimony, (c) and (d) for bismuth; (a) and (c) are for the 45° modes, and (b) and (d) for the 135°

modes.

of finite dimensions. For isotropic circular bars the
dilatational and distortional wave phase velocities have
been shown by Pochhammer™* to depend on the ratio
of the cross section radius to wavelength a/X and upon
two functions of the Lamé stifiness constants. Chree®
extended Pochhammer’s results to noncircular, normal

®A. E. H. Love, .. Treatisc on the Mathematical Tkeory of
Elasticity (Dover Publications, Inc., New Yoik, 1944), p. 287.

2 H. Kolsky, Stress Waves in Solids (Dover Publications, Inc.,
New York, 1963), p. 54.

2A. E. H. Love, 4 Trealise on the Mathematical Theory of
Elasticity (Dover Publications, Inc., New York, 1944), p. 290.

cross-sectioned cylinders and to nonisotropic media. In
the absence of an exact treatment giving the longi-
tudinal and two transverse phase velocities in aniso-
tropic cubes it is reasonable to assume that the size of
the correction for each phase velocity would be different.
If these corrections are large in relation to the experi-
mental errors, fitting tl.c plane-wave formalism of
redundancy eight to the 14 corrected velocities is not
assured. That we are able to do so, however, suggests
that the corrections are not significant. Our large
minimum value of about 25 for /A, where % is the radius
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of gyration of our noncircular section, suggests that
these corrections would also be negligible for data with
much narrower tolerances than we are able to specify.
Our data cannot directly support this conclusion for it
is possible that our large tolerances result in part from
these effects.

Within the context of the above considerations, we
believe our experiment to be a reasonable compromise
as regards both the use of the plane elastic wave
formalism in extended media for our finite sized speci-
mens, and the use of predominantly energy-refracting
modes in determining the elastic constants. Judging
from the topological fitting procedure presented, we
estimate that the values given are accurate to within

about 5%,.
APPENDIX I

In this section, we outline the general procedure used
to calculate the energy flow components and present the
expressions obtained for the 45° (I,m,n::0,1/v2,1/¥2)
and 135° (I,mm::0, —1/v2,1/V2) propagation direc-
tions.

The ith Cartesian component of energy flow, P;, is
given by Love' as the negative of the scalar product of
the component of the stress tensor on the surface normal
to the 7th direction, T;, with the particle displacement
velocity 1u:

P.'= —T,"l'l. (Al)
The displacement

u=pA exp(j(wt—K-1)) (A2)

has components #; where 7 runs from 1 to 3 correspond-
ing to the x, , 2 or a3, %2, x5 directions. A, K, and r are
in this order the particle displacement eigenvector of
unit magnitude, the wave propagation vector, and the
field point vector, and have components 4;, K, x:. p is
the scalar amplitude of the displacement; T; has com-
ponents Xj;, 7=1,2,3. These are related in the usual
way to the strains e,, through the stiffness constants by

X‘j= Ct'jrc(1+8n)era/2 (AS)

summed for 7,5=1,2,3; 8, is the Kronecker delta. In

terms of the displacements,
VASZE I

~ For a particular mode g, the components of displace-
ment, written as

u9=p949 exp[ j(wi—Ke-1)], (A35)

are substituted into (A1) and (A4), and the result of
substituting (A4) into (A3) in turn put into (A1). We
finally obtain

du, 0
€r3= (—"'

U,
dx, 0z,

o aw)z
(p Cijrs j" rvlag; (A6)

Py=
2y,
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where 1,7, the cosine of the angle between K7 and the g
coordinate axis, is /, m, or # for the gth mode, as s=1, 2,
or 3. This expression is valid for crystals of any sym.
metry. It differs from Waterman’s'® Eq. (5.1) in that it
is written directly in terms of the stiffness constants,
(The four-index notation is reduced to the two-index
notation in the usual way: ij—a, rs—b; 11— 1
22—2,33—3,23=32—4,13=31-+35,12=21-6.)

Our results for K with direction cosines (0,7,1) are
the following : For g=10, 4= (1,0,0) for antimony and
bismuth and

P\=0, (A7)
P ( plow)z
Pylo= (mees+ncs), (A8)
10
- lOw)Z
P = (meyst-ne) . (A9)
2vy9

For g=9 and 11, we have A= (0, 0.7513, 0.6399),
A= (0, —0.6599, 0.7513) for antimony and (0, 0.7696,
0.6385) and (0, —0.6358, 0.7696) for bismuth;
m=n=1/V2.

Py=0, (A10)
— (powy
Pyr= ([1)1611— 71614].4 274 2”+[—1)12614
Vg
- n{644+613} ]A 274 394y A 374 3”) . (:\1 1)
— (pw)?
P3”= ? ([— 77161<l+ 71644]A 2”A 27
i

+mfcatcis A 274 39+ nczd 39457) . (A12)

The appropriate P;? for propagation in the (0, —1/V2,
1/¥2) direction follow from (A7)-(A12) by replacing
=m with Fm, and the g indices 9, 10, 11 with 12, 13,
and 14, respectively. The unit eigenvectors are A"
=(1,0,0), A= (0, —0.8625, 0.5060), A*= (0, 0.5060,
0.8625) for antimony and (1,0,0), (0, —0.8421, 0.5393),
(0, 0.5393, 0.8421) for bismuth.

In the cases discussed, P;=0, a result to be expected
when the excitation does not disturb the mirror sym-
metry of the medium. The energy-flux deviation angle
from the Z or X axis, , is tan™! Py/P;.
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The method of exact power-series expansions has been extended to include both nearest-neighbor and
next-nearest-neighbor interactions in the Heisenberg model. The series expansions for the susceptibility in
zero magnetic field and the free energy in zero magnetic field have been derived to the fifth power in re-
ciprocal temperature for the simple cubic, body-centered cubic, and face-centered cubic lattices. For the
special case when all interactions are equal (equivalent-neighbor model), an additional term has been ob-
tained in these expansions. For purposes of discussing the susceptibility and magnetic specific heat, the
series expansions have been derived for lattices in which third-neighbor interactions are included, but only
for the equivalent-neighbor model. Estimates of critical points are given, and the Padé-approximant method
is used to study the dependence of the critical properties (temperature, energy, and entropy) on the relative
strength of the first- and second-neighbor interactions. It is found that the variation in the critical point is

well represented by
Te(e) =T (0)[14-m1e],

where a=J3/J, and lies in the range 0<a < 1, and T (0) is the critical temperature of the nearest-neighbor
model. The values of 7, are 0.76, 0.99, and 2.74 for the fcc, bee, and sc lattices respectively. Both the second-
neighbor model and the equivalent-neighbor model are used to investigate the behavior of X, for values of
T near T. It is found that all the coefficients in the magnetic-specific-heat series expansion are positive for
the equivalent-neighbor model, and that for lattices with large coordination numbers, reliable estimates of
the critical point may be obtained using this function.

3 MAY 1965

I. INTRODUCTION

UCH previous work has been done on the critical
behavior of the Heisenberg model of a ferro-
magnet when it is assumed that exchange interactions
(—278S;-8;) exist only between nearest-neighbor spins
on the lattice. The most powerful theoretical approach
towards obtaining estimates of critical constants is
that introduced by Kramers and Opechowski.! In this
method exact series expansions in ascending powers of
reciprocal temperature are derived for the partition
function and related thermodynamic functions for
various lattice structures. In recent years much work

1H. A. Kramers, Commun. Kamerlingh Onnes Lab. Leiden,
?uppl. No. 83. W. Opechowski, Physica 4, 181 (1937); 6, 1112
1939). »

has been done in extending the series expansions for
the zero field susceptibility X, and magnetic specific
heat C, to a high degree of approximation.? For the
case where the spin variable S may take an arbitrary
value the most extensive calculations have been per-
formed by Rushbrooke and Wood.? These authors
obtained the first six coefficients in the susceptibility
series, and the first five coefficients in the magnetic
specific-heat series. Recently a more powerful method
of deriving these coefficients has been developed by

?V. Zehler, Z. Naturfc sch. A5, 344 (1930). H. A. Brown and
J. M. Luttinger, Phys. Rev. 100, 685 (1955). M. F. Sykes, thesis,
Oxford, 1956 (unpublished). C. Domb and M. F. Sykes, Proc.
Phys. Soc. (Llondon) B69, 486 (1936).

3 G. S. Rushbrooke and P. J. Wood, Proc. Phys. Soc. (London)
A6S, 1161 (1955); Mol. Phys. 1, 257 (1938).
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